You are here
Home > Keto Diet >

Dominic D’Agostino, Ph.D. on Modified Atkins Diet, Keto-Adaptation, Ketosis & More

[Rhonda]: Hello, everyone, I'm sitting here
with Dr. Dominic D'Agostino in Tampa, Florida. Dominic is an assistant professor at the University
of South Florida where his primary research focus is on metabolic therapies, particularly
nutritional ketosis, ketone supplementation, and how they affect a wide variety of pathological
conditions ranging from neurological disorders like ALS to epilepsy to muscle wasting and
cancer. So very, very interesting stuff that Dominic's
doing here in Florida. He showed me some of his really cool equipment,
which is super-exciting and very interesting. Some things I hadn't seen before. So welcome, Dominic. [Dom]: Thanks for having me. [Rhonda]: Yeah, thanks for inviting us to
your lab. [Dom]: Great to have you here in my lab, yeah. [Rhonda]: Super-cool. [Dom]: Thanks. [Rhonda]: So tell us a little bit about your…some
of your more recent interests and research where you're, sort of, been, what have you
been looking at.

[Dom]: Okay, so more recently, I'd say within
the last three to five years, and it took a while to develop them, but as you know we're
working on ketone supplementation. And the idea is to, kind of, mimic the therapeutic
effects and performance-enhancing effects of the ketogenic diet. So nutritional ketosis achieved through a
dietary means with a low-carbohydrate, high-fat diet has therapeutic effects for a broad range
of neurological disorders, in particular, seizures. And you can make the argument that pretty
much every neurological disorder is some way linked to a metabolic dysregulation. And we're interested in understanding how
nutritional ketosis may help to preserve and, sort of, stabilize brain energy metabolism
to metabolically manage these seizure disorders.

So in the process of understanding and studying
the ketogenic diet, we are developing a broad range of ketone supplements which can include
ketone esters and ketone mineral salts, which where we combine a ketone body, beta-hydroxybutyrate,
to an essential electrolyte and create a wide variety of salts. And we're working…a lot of the work now
is focused on formulating these to make them tolerable, to make them palatable, and to
understand their therapeutic potency for different types of disorders. [Rhonda]: Yeah, so you mentioned that at the
root, or at the heart of a lot of these neurological disorders is a metabolic dysfunction and how,
first of all, when we talk about nutritional ketosis, to me, it's so, it's such a broad
way of describing. [Dom]: Very broad. [Rhonda]: What is nutritional ketosis? Like, and how do you achieve it? [Dom]: So nutritional ketosis could be, it's
defined…they, kind of, have the same definition in my mind.

It's achieving and sustaining a level of blood
ketones. And I think when people say they've done the
ketogenic diet, they did that it didn't work for them or it did work for them, I would
ask the question, "Well, did you measure blood ketones? Did you confirm, in fact, that you were able
to achieve a state of ketosis?" Defined as an elevation of blood ketones above
0.5 millimolar at the very least. Ideally, you want to stay between one and
three millimolar of ketones. And when you've achieved that state… [Rhonda]: You're talking about blood ketones? [Dom]: I'm talking about blood ketones, yeah,
which is, kind of, the gold standard. And this can be measured. There's a number of different devices out
there that measure blood ketones. And when that…the state of nutritional ketosis
is achieved, you're also, not only not only that biomarker is, kind of, there and we have
technologies to measure it, but it would also be important to measure your blood glucose
and maybe insulin levels, too.

The suppression of the hormone insulin drives
hepatic ketogenesis and drives the body's ability to make ketones. And that has therapeutic implications for
type 2 diabetes, obviously. So my definition of nutritional ketosis would
be an elevation of blood ketones and the, kind of, the difficulty in prescribing that
or telling someone to do it is that the way to implement that is, kind of, similar with
everyone, but everyone responds differently depending on where you're coming from. So if you have an obese subject that's type
2 diabetic, it's going to be different than an athlete. And women, there's some differences between
women and men, I think. So defining nutritional ketosis is relatively
easy with an elevation of blood ketones, but implementing it and being able to, for the
individual to commit to it and have that, kind of, ability to control their diet, which
is very linked to lifestyle, has been, sort of, a difficult thing to do. And that's where ketone supplementation, kind
of, comes in and can allow someone to rapidly achieve nutritional ketosis and sustain it
and perhaps get many of the therapeutic benefits that we're just finding out now.

We know that ketones are more than just a
metabolite. They are more than just an energy metabolite
that the brain can use, but they are metabolites, especially beta-hydroxybutyrate, are very
powerful signaling molecules. And we're just beginning to understand, sort
of, the therapeutic effects of these metabolites as signaling molecules and that's a big thrust
of our lab right now. [Rhonda]: Oh, you're interested at looking
at this and the effects… [Dom]: Yes. [Rhonda]: Interesting, I'm familiar with some
of Eric Verdin's work at Gladstone and how he's… The science… [Dom]: He's a pioneer in… [Rhonda]: I'm very interested in beta-hydroxybutyrate
as not only as a source of energy for mitochondria. So being able to be converted into a thermodynamically
favorable source of energy, but also the fact that it's able to change cell signaling in
the brain and it's able to turn on genes that are involved in dealing with stress better,
some of these genes are involved in longevity, FOXO3 for one.

[Dom]: Absolutely. [Rhonda]: So it's all very interesting. But something that I…like, in my mind that
I'm not exactly certain about is that nutritional ketosis. So eating a high-fat diet and, of course,
there's, okay, what types of fat are you eating? Are you eating more polyunsaturated, you're
eating more saturated? You know, how much protein are you eating? What types of carbohydrates? Are you getting fiber? I mean, there's so many diets, very complicated. But there is no doubt that there are interesting
therapeutic effects from nutritional ketosis. I am interested in the the actual end product,
which is ketone bodies and these signaling molecules like beta-hydroxybutyrate being
able to get those maybe even without having to eat a high-fat diet, you can get them from
fasting, from intense exercise, right? Also, you can achieve… [Dom]: Post-exercise ketosis. [Rhonda]: Post exercise. [Dom]: Absolutely. [Rhonda]: So, I guess, the, kind of, the question
I had for you with nutritional ketosis besides having to define it was, what do people eat
to obtain that? How do you get blood ketone levels between
one and three millimolar? Like, what do you have to eat? What do you not have to eat? [Dom]: Okay, that is a good question and it
varies depending on who you talk to and what's optimal.

I think a good way to approach it would to
be describe what has been used classically and how the diet has evolved over the last
two to three decades, I think, with some of the work with Eric Kossoff at Johns Hopkins
has, kind of, advanced the idea of using a modified Atkins diet or modified ketogenic
diet. And I can, kind of, talk a little bit about
strategies that I use, I think, and others that I know use to achieve that state and
sustain it for optimal performance in health, I think. So in taking a step back, the classical ketogenic
diet would be like a 4:1 or 3:1 diet, and that's, kind of, the ratios of the macronutrients. Four being fat and one being a combination
of carbohydrates and protein together. So a pretty protein-restricted diet.

And the ketogenic diet is not a high-protein
diet. It's actually moderate to low protein diet. And most people don't understand that, they
think, especially in the fitness community, if they go on a ketogenic diet…if they say
they've been on a ketogenic diet, what they will describe to me would be a very low-carbohydrate,
high-protein, moderate-fat diet, but the ketogenic diet as it is used classically for drug-resistant
epilepsy, the original was, like, 90% fat, like 85% to 90% fat and maybe about 10% protein,
typically, and 8% to 10% protein, and a very minimal amount of carbohydrates, and it was
heavily based upon the used of dairy fat. So dairy was the primary, kind of, vehicle,
yeah, to get calories into you. And we know that the use of dairy especially
in some people, dairy protein in particular, but even sometimes dairy fat, too, can have
negative consequences for some people.

So there's a wide variety of, kind of, ketogenic
diets out there and they, the ketogenic diet has been defined by this ratio of macronutrients. But what we're learning now is that it's more
than just macronutrients to optimize the diet, especially for individuals. The sources of the macronutrients, the fatty
acid profile, the type of protein, it allows for some amount of carbohydrates, and the
types and quality of the carbohydrates as it relates to gut health and gut microbiome,
I think, is really important. I think it's really important to optimize
the diversity of carbohydrate sources in the form of raw vegetables, and I think that it
can optimize the diversity of the gut microbiome, too.

I think those two are linked, the diversity
of the foods in your diet and the diversity of your gut microbiome. I've seen that just through feedback. It's not really studied, but it's something
everyone knows and it should be studied. So the classical ketogenic diet is very strict
to follow. There's a few studies showing that it can
influence a lipid profile in a negative way, meaning a high elevation of LDL. And in kids, I think, that follow the diet,
they had a high level of triglyceride. There was one study that's often referenced
in regard to the ketogenic diet being atherogenic the triglycerides are really high in some
of the kids. [Rhonda]: It's probably a very complex gene-nutrient
interaction, as well. [Dom]: Absolutely, yeah. [Rhonda]: There's some, I'm not sure if you're
familiar with any of this work. It's something I'm getting into recently is
this nutrigenomic field and particularly, there is PPAR-gamma and PPAR-alpha, which
is important for ketosis and polymorphisms that are associated with not being able to
respond well, so it's very likely that some of these people that don't respond well or
may have that polymorphism.

[Dom]: Yeah, undoubtedly, because there are
some people that really have a negative effect, but I would it's, kind of, few and far between…maybe
as high as 20% in some circles, but generally speaking, if you have a dietitian that's pretty
savvy and has worked with enough people, I really emphasize experience because there's
no substitute for experience. So you could know as much…yeah, you could
know the biochemistry behind nutritional ketosis, all the pathways, whatever, but working with
a dietitian, I always stress that in people that want to try the ketogenic diet to start
off with a good dietitian. They can tailor and tweak the diet for your
specific needs and I find that, for me, personally, a diet that's low in dairy is really essential
because I just don't do good with dairy, and nuts have been a staple for some people for
the ketogenic diet and I have, like, a mild nut allergy.

So that's another food that I've, kind of,
had to eliminate. But despite that, I have been following what
I call a modified ketogenic diet and I think it's pretty similar to the modified Atkins
diet that Eric Kossoff has been using at Johns Hopkins. He's at Johns Hopkins, mainly a neurologist,
but has a team of dietitians working with him and has done an incredible job advancing,
sort of, the use of the ketogenic diet. You know, he follows in the steps of John
Freeman, who was really a pioneer in getting the neurology world to recognize a ketogenic
diet as a viable metabolic therapy for drug-resistant epilepsy. And he did a lot of work with The Charlie
Foundation and worked with them to help promote awareness of the diet, education of the diet. So some work that Eric Kossoff has been doing
over the years and publishing on is showing that the modified Atkins diet has much of
the therapeutic potency of the strict classical 4:1 ketogenic diet.

So instead of 90% fat, the modified Atkins
diet is roughly 65% to maybe 70% fat which is, kind of, what I follow now, and about
20% to 30% protein, with the balance being still very low on carbohydrates, like no more
than 5% or 10% carbohydrates. But it's more liberal in the use of protein. And it's also, advocates the use of medium-chain
fatty acids, can be incorporated into that. So by following a diet that's more liberal
with the protein and less not restrictive, and less in of a need of a such a high-fat
content, I've been able to maintain a moderate state of ketosis as do many of the therapies
or many of the patients that are benefiting from this therapy for a wide range of disorders.

So I think that makes the diet more accessible
to people, and I think the biggest hurdle now is just compliance. So people know the benefits of the diet, some
of them are a little concerned with the side effects of the diet as far as lipid profiles
being altered. [Rhonda]: What about gut? [Dom]: The gut, yeah. [Rhonda]: Have you been looking…how long
have you been doing this modified ketogenic diet? [Dom]: It, sort of, evolved from 2008 to '09,
I started experimenting with it because that's when I got interested in using… [Rhonda]: And you've continued on ever since
then? [Dom]: Yeah, I've never really gotten out
of ketosis. [Rhonda]: It's quite a long time. That's quite a long time. [Dom]: Yeah. If I did, I may have reverted back to, like,
a low-carb Paleo which is maybe up to 40% to 50% fat or protein on some days. So I've been a little more liberal on the
protein at times, but yeah, I've been following it for a long time.

And I do blood work really consistent. [Rhonda]: Well, the reason I ask is because,
it's the one, like I mentioned, I'm very interested in nutritional ketosis, which is why I'm excited
to talk to you because you know so much more about it. And I'm trying to, like, get to the bot-,…there's
this conflict in my head with eating a lot of fat and its effects on the gut because
I know a lot of my gut researchers, a lot of my friends are, kind of, looking at gut
health and one of the main things that you do induce endotoxin, which is released from
bacterial cell membranes. I remember it's one of main things needed
to induce gut permeability is if you have a high-fat diet. You feed mice, you feed…this is all done
in animals, of course, which is… There's lots of problems with that, but…

[Dom]: What's the typical fat source for that? Is it lard or is it…? [Rhonda]: A variety of different fat sources. There's lard, there's corn oil. I mean, so there's there's a variety of different
fat sources, but fat itself in order to be digested, you have make these bile acids like
deoxycholic acid, which which causes endotoxin release. It also acts as a surfactant. I mean, it's like a detergent. So, I'm not convinced that it's not not healthy,
but I'm not…I'm, sort of, trying to get to the…there's a disconnect in the literature
because there's so much information out there showing the benefits of a ketogenic diet,
nutritional ketosis. [Dom]: Let me ask this question real quick. So when endotoxin is released from these bile
acids, so there would be a predictable, a characteristic cytokine profile that would
reflect that, right? [Rhonda]: Yes, so there's a cytokine profile
and you also measure endotoxin in the blood, which is a very tricky thing to do because
there's a lot of false positives and I know someone who's trying to develop an assay to
make it actual-, because he's very OCD about it.

It's not out there for clinical use yet because
of that reason, and even doing it in animal studies, there's a lot of researchers that
don't really do it right, measuring endotoxin. [Dom]: Is there any benefit to endotoxin? So when I go exercise right, and you measure
my blood and we look at reactive oxygen species or inflammatory mediators, you could look
at the blood and say, "Don't do that, this is not a good thing to do." Whereas if you have periodic spikes maybe
and endotoxin, is it stimulating a hormetic effect where it's enhancing my resilience
or resistance to toxins, do we know that? [Rhonda]: So endotoxin, I would say based
on everything that I have known and researched and from my interactions with people that
have been doing this research. It's not like reactive oxygen species where
there's it's a potent signaling molecule that has this hormetic effect, increases mitochondria
biogenesis, it increases all these genes involved in dealing with stress there's lot of benefits. You know, endotoxin release from the gut,
one, it causes more VLDL production because VLDL sucks soaks it up.

So that's part of the reason why inflammation
is also correlated with an increase in LDL number. It also binds to ApoB, it binds to the part,
it binds to where the LDL receptors bind so that LDL can't be recycled as well. So it, kind of, prevents. There's a lot of bad things about endotoxin
being released. Now I don't know, maybe there is some, sort
of, slight benefit from endotoxin being released. You know, I don't want to get too into the
endotoxin world. I'm just saying there is, in my…I'm trying
to, like, understand in my mind how…. [Dom]: So you might be a little biased because
some of the high-fat diet work has endotoxin. I'm a little bit, I need to get educated,
I mean, I understand endotoxin from, kind of, like a basic science point of view.

[Rhonda]: Right, like, "sepsis, bad." [Dom]: Yeah, from "sepsis, bad," but I do
know when your body is challenged, even things like radiation. I mean, there are some things…you know,
I don't know of any case where an auto antibody is a good thing, but I know most of the things
that are bad out there do have some benefits, it's the level it's the level. [Rhonda]: Absolutely, dose is very important. [Dom]: And the phenotype's ability to adapt
to that chemical, that stimulus is really important. Like, old people don't adapt to older phenotypes
don't adapt to an oxidative stress stimulus as robust.

So I would be interested, and there's ways
to simulate endotoxin, right? Experimental models and that's something we
can do, challenge, perhaps run an experiment where we have animals on different diets where
we can challenge them and look at inflammatory cytokines. We're doing a lot of that work now. [Rhonda]: And gut health in general, gut permeability. I would love to see some ketogenic research
go in that direction because there's so many unanswered questions in my mind.

And there's a lot of bad data out there, like
so from the high-fat diet and the effects on the gut because when you look at controlled
diets and the high-fat diet, well, the controlled diets have, like, 50% more fiber, and it's
like, "Well, that's not really the same thing if you're just changing fat." So there's, you have sift through all sorts
of crap, and it's, like, there's lots of data you just have to throw out, but still at the
end of the day, I'm uncertain and I'm weary about me, eating a high-fat diet. Not not mention the fact that I have certain
gene polymorphisms that may not be as compatible, but because of that, because of gut health,
that's my major, the limiting factor for me is gut health and I like to see more research
on ketogenic diets and gut health, like, that's something that I think is important.

[Dom]: How to optimize it. [Rhonda]: Yeah, or just what the effects are,
like maybe they're for one, we're starving out probably a lot of the pathogenic sugar-eating
bacteria. So there's probably some good things going
on. And then there's, well, what effect does medium-chain
triglycerides has? Is it the same as long-chain fats? Maybe not. So maybe…so there is different types of
fat there's studies that had been coming out very recently showing the effects of polyunsaturated
fat on the gut biome, and how it has a positive effect.

So maybe if you eat certain types of fat,
more of these types of fat versus the others. There's lot of things out there to be explored. [Dom]: Undoubtedly shifts it, yeah. It shifts it. I mean, your gut microbiome has an appetite
for whatever you're feeding it and that probably influences profoundly your own appetite. So I think if you have sugar-eating gut microbes,
you're probably going to be craving sugar if you go a few hours without having sugar. And I think I would be very interested in
not only, like, shifting someone from a high-carb diet to two or three different types of ketogenic
diets, I think, would be important with specific fatty acid compositions and fiber compositions. And I think it's the diversity of the fiber
that's incorporated. [Rhonda]: Diversity, yes, it is very important. There have been there's lots of different
types of bacteria and they're eating different precursors to generate a lot of these other
signaling molecules, short chain fatty acids and things like that that are regulating your
immune system, that are regulating literally hematopoiesis, Tregs, natural killer cells
lots of…and this is a whole blooming field of research.

That's also another reason I've been a little
hesitant to experiment with this because I'm so, fiber is so important for me, fiber from
vegetables. You know, I'm not adverse to fiber from fruits,
so fiber from fruits, legumes, beans, like, I like to get a lot of fiber in my diet, and
so I don't know if that, is that compatible with it? [Dom]: I get more fiber on a ketogenic diet. You know, and we're talking about a well-formulated
ketogenic diet, as Jeff Volek likes to… And because that is really important because
you talk to people that you eat ketogenic diets and it's all over the board. But I think a well-formulated ketogenic diet
would have an abundance of fiber sources, everything from green vegetables, of course,
but would include a salad, and I think it's really important from a gut microbiome perspective
to get in raw vegetables, I think, from what I've known and a half-dozen individuals that
I talk to that are, kind of experts in this field. They think that that has a pretty profound
effect, and I have always done that and I would say my gut health has not…

It may be due to what I eliminated in my diet. I grew up in an Italian family eating a lot
of pasta, bread, so they were the staple foods, and I gravitated toward a Paleo diet mid-90s,
early 2000s and then the ketogenic diet, and I have never had better gut health than when
on a ketogenic diet, but my diet is, like I said, more of a modified Atkins and has
a pretty liberal amount of vegetables in it. And I think the benefit to including the vegetables,
they're just carriers for the fat and they also slow protein digestion, which helps minimize
the insulin spike that you can get from protein and helps keep me in ketosis.

But, I mean, getting back to your question
about the ketogenic diet or high-fat diet influencing endotoxin or factors, I would
think that would show up in the literature that if some, and maybe it does, but it usually,
a high-fat diet is in the context of a high-carbohydrate diet, too. So that's what we don't know when we talk
about LDL particles being elevated, like, even skyrocketed, LDL, little peak. That is only understood in the context of
a high-fat diet, which also includes also sugar like a western diet. So we don't yet understand lipidomics and
the shifts in lipid profile of the ketogenic diet, LDL(p), specifically, we don't understand
it in the context of ketoadaptation. [Rhonda]: Okay, what's that? [Dom]: Ketoadaptation, I would, it's, kind
of, a term that Jeff Volek and Stephen Phinney coined, but I think it's very descriptive
in my mind as a physiological process when your body has adapted to using fatty acids
and ketones for fuel where you've biochemically and physiologically shifted your metabolism
from burning glucose as the primary fuel to burning glucose and also equal or maybe more,
in some cases, ketone bodies primarily from your central nervous system.

So when that happens, that's acutely, you
get an elevation of blood ketones and over time, what you do is get an upregulation of
the transport mechanism so your ability to make ketones, utilize ketones, and metabolize
ketones in the cell is dramatically increased as is the oxidative capacity of your cells. [Rhonda]: After you start making more ketones. [Dom]: After, yeah. It's, sort of, driven by being in a state
of ketosis enhances fat oxidation over time. So when we say ketoadaptation, we should probably
say keto and fat adaptation. So there's studies out there that show our
metabolic physiology changes pretty profoundly from eating this. We basically, we burn what we eat, right? So with a high-carbohydrate diet, we are pretty
much burning that as fuel and our bodies can adapt remarkably well to burning a macronutrient
profile that's reflective of the ketogenic diet.

And when we do that, a lot of really remarkable,
beneficial metabolic processes happen including mitochondrial biogenesis, reduction of ROS,
reduction of inflammation, a reduction of specific inflammatory cytokines that may be
associated with with age-related chronic diseases are reduced. [Rhonda]: And so reduction of ROS, because
I would, no, I guess some of Richard Veech's, have put some ideas out there about the… [Dom]: Ketones, direct effect, yeah, on that,
too. [Rhonda]: Yeah, it's so funny because in my
mind I always think about like, well, if you're inducing your mitochondria to work more, you're
going to make more reactive oxygen species, right, and that's, sort of, what I think would
be a driver of killing abnormal cells, cancer cells that are primed to die.

They're expressing way more pro-apoptotic
proteins they've countered it with anti-apoptotics. All they need is a little push, a little reactive
oxygen species pushed to death. [Dom]: And that's increased initially. [Rhonda]: It is. [Dom]: So yeah, it actually activates like
a Nrf2. So when someone gets on a ketogenic diet,
it's a stress to the body and you… [Rhonda]: Yeah, so you are…you aren't making
more, because if you are causing your mitochondria to only work, right, that's the only way you
can make energy, then you'd think that you have to be making reactive oxygen species. At least if you're looking in the context
of a cancer cell, which just would be glycolytic and not using the mitochondria at all, right? Then definitely there would be a much more,
an increase in ROS.

So ketone, so you're saying that it can suppress
ROS. Is that through some of what Richard Veech
has put out there in the semi-ubiquinone, how it's like… [Dom]: Oxidize Q, makes it less available. [Rhonda]: Yeah, right, because that's the
most… [Dom]: If Q is oxidized, yeah, so. [Rhonda]: So Q being ubiquinone. [Dom]: Yeah, ubiquinone. If ubiquinone is oxidized, which is achieved
with our beta-hydroxybutyrate metabolism, if that's oxidized, then you have less availability
for that electron to react with molecular oxygen in the metabolic pathway. So you would produce less superoxide anion,
which is your precursor to more reactive oxygen species. And that's been shown elegantly in a number
of models including the cardiac model, which he did, the Langenhorn [SP] model, the perfused
heart preparation showing that you get a greater hydrolic efficiency of the heart in the presence
of ketones.

You know, with a given amount of oxygen, you
can generate proportionally more ATP, energy currency. [Rhonda]: Is there another way that ketones
also suppress ROS? Or is that through the hormetic effect of
activating mitochondria, then increasing Nrf2 and things like that? [Dom]: Yeah, that would be a secondary effect. I would say from a acute point of view, as
simply as a metabolic fuel through the mitochondrial efficiency is greater. So you have a greater mitochondrial membrane
potential, a greater driving force for ATP synthase to make ATP. So it energizes the mitochondria in a way
that would be expected from a metabolic fuel that's, sort of, superior from a bioenergetic
point of view.

So you have a greater capacity to generate
ATP for a given amount of oxygen that's available. So with that occurring, the metabolic efficiency
of the cell would be, sort of, preserved, you're using less oxygen to make the same
amount of ATP, less reactive oxygen species. And, of course, if you're shifting away from
glycolysis and shifting towards oxidative phosphorylation… [Rhonda]: So in the context of a cancer cell. [Dom]: In the context of, yeah, any kind of
cell, like our tissue, really, skeletal muscle or cancer cell, yeah, you are forcing the
body in a way and to stress, initially, to upregulate mitochondrial machinery, really,
and more mitochondria will start budding off and creating mitochondrial biogenesis. [Rhonda]: So it increases mitochondrial biogenesis. [Dom]: Yeah, the number of mitochondria. Then, the proteins that are associated with
the electron transport chain, those proteins are upregulated. [Rhonda]: That's very interesting.

It acts very similar to lactate. I don't know if you're familiar with any of,
like, the brain work, and George Brooks, and lactate. [Dom]: Yeah. I…very interested in lactate as a graduate
student. [Rhonda]: Because it does the same thing. Goes to the same transporter, right? [Dom]: Yeah, at MCT. I studied lactate as, sort of, an undergrad
and graduate student, like, I am studying ketones now as an alternative fuel. [Rhonda]: Oh, really? We're you looking at it in the brain? [Dom]: Yeah, during hypoxia. So I studied the neural control of autonomic
regulation, so brain hypoxia and what our brains do under hypoxia. And lactate is a big player in preserving
brain function, viability, health, and I studied lactate as an alternative energy source under
hypoxia. And now, I think of ketones as, like, the
alternative energy source when your brain is under normal physiology. And I think there are some uses for lactate,
too, as a fuel. I think when we exercise we're creating lactate
and we feel good, it's not really talked about.

It's something that I want to study and maybe
talk about a little bit more is that the lactate…you're also sending, not only are you sending ketones
to your brain, but you're sending lactate to your brain, and I think that's maybe not
talked about that much, but there's a potential out there for lactate supplements. [Rhonda]: George Brooks in UC Berkeley, he's…I
don't know if you're familiar with any of his work. [Dom]: A little bit, yeah, peripherally. [Rhonda]: He pioneered the whole lactate shuttle
theory, but he's been looking at the effects of lactate generated during exercise, for
example, when you're forcing your muscle cells to work harder and you're making more lactate,
it gets over, it crosses over the blood-brain barrier gets into neurons.

So neurons themselves actually use lactate
generated from astrocytes. So they are using, I mean, neurons actually
using lactate. It's also a thermodynamically and energetically
favorable source of energy much like ketones. And so neurons like doing that because, one,
it's easier, and two, because glucose can then be freed up to be shunted into the pentose
phosphate pathway, which can be used to generate NADPH, which is important for glutathione
recycling. [Dom]: Antioxidant capacity, yeah. [Rhonda]: Right, which makes sense why… Probably, I think there's a lot of parallels
between ketone bodies and ketone supplements and how they're not only being used as a preferential
source of energy in the brain. Do you know anything about this, about, like,
how frees up glucose then to be used for other… [Dom]: Glucose sparing. [Rhonda]: …metabolic pathways? Yeah, glucose sparing.

[Dom]: Yeah, it's thought that some of the
work by Steven Cunnane, I think, is shedding light on this, too. [Rhonda]: Where is he at? [Dom]: He's in Canada. I forget the institute that he's at. Joe LaManna has done some similar work and
he's at Case Western and looked at the, kind of, the interaction of what does the brain
prefer…what's the preferred fuel source for the brain. I get this question a lot. I think it depends on, you know…I don't
know if it's right to say that the brain always prefers ketones. [Rhonda]: The brain cell we're talking about,
for one. The neuron, astrocytes. [Dom]: Neurons and astrocytes. But, yeah, I guess, I mean, maybe we're definitely
biased towards understanding neurons relative to astrocytes. [Rhonda]: I think most people that ask me
that question are….

[Dom]: Astrocytes are fascinating. I think we need to study that more. But I think in the context of, like, aging
and a context of traumatic brain injury or pathology, I think the brain will really prefer
to use ketones because…or in the context of some kind of stress hypoglycemia or something
like that, I think the brain will also prefer to use ketones. [Rhonda]: Yeah, so why do you think that is? [Dom]: Well, I think… [Rhonda]: I might have my own reasons why. [Dom]: There's a whole host of reasons or
things that can cause impaired brain energy, brain glucose metabolism and that could be
internalization of the GLUT3 transporter, which occurs…it's kind of linked to Alzheimer's
pathology. [Rhonda]: GLUT… [Dom]: GLUT3, yeah. And there's a couple of key enzymes that are
either deficient or not active like they should be, pyruvate dehydrogenase complex is deficient. [Rhonda]: So wait, are these in…are the
GLUT3 changes in astrocytes or in neurons? [Dom]: Primarily in neurons. [Rhonda]: Neurons, okay. [Dom]: So the glucose transporter in neurons. [Rhonda]: So if neurons are using lactate
primarily…the astrocytes are actually what's… [Dom]: Shuttling a lot.

[Rhonda]: The astrocytes are using glucose
and that's why the brain needs glucose and they're producing the lactate. The neurons are using the lactate because
it's getting shunted and converted into pyruvate. [Dom]: And the contribution of that is not
completely known, but it's pretty significant contribution during hypoxia, I would think. [Rhonda]: There's been studies out there showing
that not just during hypoxia, but actually just under normal physiology that… [Dom]: It's a key player. [Rhonda]: It is, yeah, the neurons are getting
lactate continually from astrocytes which are generating it, but that the astrocytes
become aberrant during…for whatever reason, it's not known, Alzheimer's leaves traumatic
brain injury, so they can't make that lactate and neurons have to start using the glucose,
which then is, but I mean, that's just one.

[Dom]: Yeah, I've heard about that, I haven't
looked into that. Yeah, so there's some key enzymes then that
people look at not only just the lactate levels… [Rhonda]: I think that…I have no idea what
they're looking at, but for the pyruvate dehydrogenase complex, you're saying that's also aberrant
in some of these disease states because then, you wouldn't be able to use the lactate because
you couldn't convert it into pyruvate. So anyways, it's all kind of, I totally interrupted
you, though, but you were talking about… What were you talking about, the aberrant
enzymes, like GLUT3 and pyruvate dehydrogenase, and how these are aberrant in different neurological

[Dom]: Yeah. So I think, I think, well, maybe the question
we're trying to get at is the contribution of ketones as a brain energy source and especially
in, sort of, in academia and circles where I teach, it's not even, still not really known,
it's not really accepted or understood that much. But I think the capacity, the metabolic flexibility
of the brain to be able to use ketones, we can exploit that and we do that with nutritional
ketosis, and it's altering brain energy metabolism and the neuropharmacology of the brain in
ways we don't completely understand now, meaning the neurotransmitters in the brain. So I could draw off GABA. So you have more GABA, the GABA-to-glutamate
ratio is shifted in favor of higher GABA. So there's a higher GABA-to-glutamate ratio
when one is on the ketogenic diet.

[Rhonda]: In people that are not having…in
normal people, as well? Just, like, in general? [Dom]: Yeah. [Rhonda]: Interesting. [Dom]: It's thought that, and there's different
reasons for that. There's glutamic acid decarboxylase is an
enzyme. [Rhonda]: Is that how it helps with epilepsy? [Dom]: That's part of it. I think there's about 20 or more things going
on if you look at all the signaling pathways [crosstalk 00:39:37] actually what happens,
yeah, with metabolism, but I think a key player in that is an elevation of GABA to glutamate. And we need glutamate to make GABA, right,
but the enzyme is elevated and the pathways are shift in favor of more glutamate to GABA,
which has a stabilizing effect on your cell membrane and neural interactivity, in general.

[Rhonda]: How readily do ketones cross the
blood-brain barrier? [Dom]: It's thought up to five millimolar,
maybe six, seven millimolar, they can readily cross the blood-brain barrier. [Rhonda]: You have to get that high before
they start crossing? [Dom]: No they start impeding once you get
levels up that high. It hasn't really been studied in-depth. We did brain metabolomics to show that when
we looked at the ketone levels in brain tissue and ketone levels in the blood, and there's
a high correlation there.

Interestingly, we had a diet, too, that was
high in medium-chain fatty acids. And although I heard the medium-chain fatty
acids could readily cross the blood-brain barrier long-chain fatty acids typically don't,
short-chain fatty acids sort of do. But we found very high levels of medium-chain
fatty acids indicative of them and these were normal, healthy animals. So when you take medium-chain fatty acids,
they are readily from the looks of our metabolomic data, just readily crossing the blood-brain
barrier and capable of being used as fuel… [Rhonda]: That's fascinating, I had no idea. [Dom]: …which is very, yeah, it's really
interesting. I heard about that, but when you see the data
it's at really high levels. [Rhonda]: So when they're in the brain, then
how are they…so then what happens? So they're used… [Dom]: Yeah, their medium-chain fatty acids
can be oxidized just like fatty acids for fuel, yeah… [Rhonda]: Wow, interesting. [Dom]: ..uh-huh… oxidative, but ketones
are also very high in the brain and to really capture and understand it, you have to, sort
of, capture the brain tissue really quick and freeze it and then do an analysis because
the brain's using it as fuel after you take it, your brain's, kind of, still alive.

Sort of, the step that I was showing you in
the lab where we can take the brain out and cut it like a piece of bread and then record
from it. So that brain is still active. So it, sort of, uses the metabolites. So to get a very clear snapshot of the difference
in tissue versus blood is a little tricky as is getting ATP levels in the brain.

It's a little tricky. We're working on that to be able to do that. Another question which I think will involve
radio tracers is actually to do, like, a ketone PET scan where we can look specifically at
the regional distribution of ketones and figuring out what areas of the brain may be preferentially
shuttling them and using them as fuel and how that may change under different pathologies,
how that may change under oxygen deprivation, glucose deprivation, high oxygen, as I study
oxygen toxicity. [Rhonda]: Please look at genetic states like
ApoE4 because that's one thing… [Dom]: Yeah, that's a biggie. [Rhonda]: Yeah, I'm very interested in some
of this work you're talking about in ketone supplements helping with neurological disorders
like Alzheimer's. It's been shown that that is dependent on
ApoE status, and that just, it's disappointing to me because I really want to understand
why and I just… Do you have any idea? [Dom]: Well, so you're referring to the Henderson
paper where they looked at…

[Rhonda]: Both papers. [Dom]: …Axona AC-1202? So the finding was in that study, which is
relatively small, that at least not with the diet, but using a ketone supplement that was
formulated with 20 grams of medium-chain triglycerides. So they gave to their patients, I think, just
once a day. And they did show fairly convincingly that
the elevation of beta-hydroxybutyrate correlated with an improvement in cognitive function,
but that correlation was not observed in the ApoE4 positive group, which was a little bit…it
was kind of surprising.

I would like to see that study done using
the ketogenic diet or maybe the ketogenic diet formulated with ketone supplementation. So, the question is…it did not have a negative
effect, but the question is why didn't it have a positive effect? [Rhonda]: Was there not another study where
they actually did the ketone supplement, beta-hydroxybutyrate? I thought there was, but I could be mistaken
just from my lack understanding because that would shed some more light.

[Dom]: Yeah, well, they used caprylic triglycerides,
C8, which kind of makes a lot of ketones, relatively speaking. [Rhonda]: Unless the ApoE is changing the
way you're making ketones, right? [Dom]: With fatty acids, yeah. [Rhonda]: But they measured, you said they
measured beta-hydroxybutyrate in everyone and the levels were the same because it's
like I want to understand why there was no positive benefit in ApoE4 carriers because
that's the one thing that…it seems so promising, right, that these ketone, potentially ketone
supplements or a ketogenic diet can help modulate Alzheimer's disease. [Dom]: Yeah, we…and I think you could do
it in different ways.

My student presented yesterday, she presented
this week, but she graduated with her Ph.D. yesterday and her work showed that there's
a remarkable increase in blood flow, and previous work has shown that ketone bodies can increase
brain blood flow by 30% to 40%. So that's another, when you have vascular
dementia, when you have a decreased, that being, staying in a state of nutritional ketogenesis… [Rhonda]: Or just brain injury in general. [Dom]: Yeah, it can have a profound effect. [Rhonda]: Did she understand any of the mechanisms
or do you know? Can you talk about it? [Dom]: Yeah, we're looking at that. Well, we did ischemic wounds, which I mean,
I guess you could kind of relate to an aged brain, right, with clogged arteries. We did a Doppler blood flow measurement and
showed that it spiked up considerably when we can elevate ketones. One of the things, it was not dependent upon
VEGF. So we looked at all the different factors,
so VEGF was not increased in the wound.

We looked at a couple of different other things
that we thought would be increased. Well, the one thing that stood out in the
data was adenosine. So adenosine levels are significantly elevated. Now adenosine is sort of thought to make us
sleepy. You know, when we drink coffee, it's like
an adenosine receptor antagonist. [Rhonda]: No way. [Dom]: There's high levels of ATP, sort of,
being used and we think that they may be causing an elevation of adenosine, but we really have
to delve into the metabolomics to understand why that's happening. Regardless, adenosine is a very powerful vasodilator,
and it's in higher concentrations, significantly, in the blood and that may be increasing the
profusion of tissues, peripheral tissues, and I think that was it. [Rhonda]: That's great. Did it have any effect on blood-brain barrier
at all as you look at that? [Dom]: We haven't looked at that. My colleague has been, kind of, looking at
that a little bit. We know with fasting and the ketogenic diet
that you can increase permeability to the blood-brain barrier. Things get through faster. [Rhonda]: You mean ketosis through fasting
or both, combining the two? [Dom]: Well, yeah, sort of, yeah, fasting-induced
ketosis or even the ketogenic diet can help increase the permeability of the blood-brain
barrier to a wide variety of things.

So if you are, sort of, the implications from
his perspective that if you're getting a chemotherapeutic drug, if you're getting some kind of drug
that needs to cross the blood-brain barrier that's impaired in some way, you might be
able to get that across faster in a state of fasting ketosis or the ketogenic diet. So maybe if you're fasting maybe there's just
less stuff in your blood, there's competition of things getting through and your blood's
sort of clear and you introduce the drug and you get more rapid transport because there's
co-transporters and other things or things that might be in their diet that may be impeding
transport, there's multiple independent lines of evidence to suggest that being in a state
of ketosis can help better transport things across, but when we talk about permeabilizing
the blood-brain barrier, that's like a bad thing, right, making it more permeable. In general, though, you get a knockdown of
neural inflammation from the diet and from therapeutic ketosis, which is something the
epilepsy world is very interested in.

So there's a PET scan technique that allows
us to look at neural inflammation in the brain and we know that…this is a conference that
I recently came from, that maybe an excellent predictor of when someone's going to have
a seizure. [Rhonda]: Yeah, that would be really cool
to do. Possibly see if some of those effects remediated
through this pentose phosphate shunt because glutathione in the brain is one of the major
ways of producing inflammation, right? [Dom]: Yeah. [Rhonda]: So let's say you do this in an animal
model and then you inhibit some of the pentose phosphate enzymes that are using glucose now
instead to make NADPH and say, "Oh, is that mitigated?" Do you now not have that same effect? It'd be interesting to see if that's part
of the mechanism because that's… [Dom]: It's undoubtedly is, yeah. [Rhonda]: Probably, right? [Dom]: I mean, it's part of that and, sort
of, plays into all that. [Rhonda]: So I have another question for you. Thanks for, like, letting me jump all over
the place because I'm super-interested in this and don't…

[Dom]: We need to follow up on the studies. So one of the studies we, sort of, we want
to do, just following back up on that question, is where ketones are being metabolized and
what their contribution is to normal brain energy metabolism and disease states and hypoxia
states and traumatic brain injury. So that's a lot to do. [Rhonda]: And those overlap, too, right? [Dom]: That's the direction of where we're
going with that research, is understanding that. [Rhonda]: Just to jump back again before I
ask you this other question to George Brooks' thing is that he's doing some interesting
work working with some physicians at UCLA, I believe, with traumatic brain injury. So these are people that come out with, like,
head gunshot wounds. And they are looking at infusing lactate because
he's the lactate guy. But ketone bodies will work the same way. [Dom]: I think it would work better from what
we know. [Rhonda]: Maybe even better. [Dom]: Yeah, I think a cocktail of the two
would be… And I've been debating whether or not to really
study lactate sort of the same way I'm studying ketones and maybe make lactate esters or lactate
and just to see what kind of results we see starting with our oxygen toxicity model and
working from there, which is an excellent model.

[Rhonda]: Obviously, with the lactate, you
have to have a intact blood-brain barrier because if no oxygen is getting there, you
will get the lactic acid build-up, right? Because then, I mean, the mitochondria aren't
going to be able to use the lactate, which is converted to pyruvate as energy, so it
builds up, but he has been doing some work and looking at this glucose sparing in the
brain. And in this, of course, ketone bodies would
work very similarly, in theory. [Dom]: Do you know how he gets…? Does he use, like, a lactate? There's alpha L-polylactate, I think. That's, like, in a sports supplement and some
other thing. [Rhonda]: He actually designed it… [Dom]: Oh, really? [Rhonda]: I think he's the one that, yeah,
he's got a patent on that. [Dom]: Oh, wow. I was using that back in 1991 and -two. [Rhonda]: Cytomax? [Dom]: Cytomax, yeah. [Rhonda]: That's him, that's his. [Dom]: When I raced mountain bikes, that was,
like, my go-to supplement, alpha-L-polylactate.

[Rhonda]: You should get in touch with George,
he's great. [Dom]: I know, wow. [Rhonda]: So he… Let's see, what was I just going to say? I lost my train of thought. [Dom]: The delivery or the… [Rhonda]: Oh, yeah, so the delivery that he's
doing…in this specific study, they're doing it intravenously, so. But I was mentioning the blood-brain barrier
has to be intact, otherwise, it can go the opposite way where it's actually bad for you. But it would be really interesting to see
so the question is, one, will this lactate or beta-hydroxybutyrate or whatever ketone
get into the MCT shuttle better? So there's questions of which one gets in
there? And can they be used together? And there's all sorts of interesting things,
but I'm sort of interested in this for my own personal… [Dom]: Yeah, the neuroprotective capacity
seems really compelling. I mean, from what we know about lactate approaching
it, going to back my old, like, PhD studies or whatever during hypoxia, but it would relate
to so many traumatic brain injuries, hypoxia, so you're mitigating the damage from hypoxia.

[Rhonda]: Yeah, and also traumatic brain injury
is inducing damage, and so, glutathione is one of the major ways of mitigating that. There's been studies showing that, early on,
it's important. If you get that early on, it prevents the
whole cascade so I think that ketones and lactate both seem to have huge potential for
glucose sparing, but that, you know… [Dom]: I think chilling the body and infusing
ketones, lactate with a couple major few co-factors that are part of the bioenergetic use of these
things would be a home run as far as… [Rhonda]: Yeah, get some students on it. [Dom]: Yeah, these are grants that I'm kind
of working on and writing, but I'm not sure the funding agencies are ready to fully…they
want, like, the magic pill thing. [Rhonda]: So to bring it back to the magic
pill, I'm kind of interested.

So let's say someone like me that my diet
is mostly, I eat a lot of plants, a lot of greens, broad spectrum, carrots, I eat a lot
of vegetables. So I get a ton of fiber. I eat a lot of fish. And I do eat, like, beans, so I'm not adverse
to legumes or even to oats. I like fiber. Let's say, I wanted to, I'm, like, super-interested
in beta-hydroxybutyrate because I've been following a lot of the research from Eric's
lab and I want to get some of those benefits. I want to increase my FOXO3. I want to reduce my lipid peroxidation, I
want some of that signaling effect. Plus, I want to beta-hydroxybutyrate to be
around to get to the brain, things like that. Can I potentially take a beta-hydroxybutyrate,
whatever delivery source powder, pill, whatever it is, and potentially achieve some of those
same benefits that you get from nutritional ketosis or ketosis from fasting? Let's say, but I don't eat a lot of, I don't
eat refined carbs, so I'm not getting a huge insulin spike for the most part.

So do you know? [Dom]: So, yeah, you want to have your cake
and eat it? But you don't eat cake, right? [Rhonda]: But I don't eat cake. No, I just eat fiber. [Dom]: You want to have your carbs. Yeah, that's that's really what we're working
on right now and understanding in a head-to-head comparison to see if we can derive the same
kind of benefits from ketone supplementation as we kind of with the ketogenic diet. We know the first kind of convincing studies
of this that we did was with CNS oxygen toxicity in our rat model, and in that case, the rats
were eating a high-carbohydrate standard rodent chow model, and we administered via an oral
route a ketone supplement in the form of a ketone ester.

That's probably one of the more powerful forms
of exogenous ketones that we've developed. And that had the ability to prevent CNS oxygen
toxicity from happening for almost, over 500% delay in that time to CNS oxygen toxicity. And that could not be achieved with fasting,
it could not be achieved with anti-seizure drugs. So when it comes to enhancing and preserving
brain energy metabolism in the face of a tremendous oxidative stress that breaks down brain energy
metabolism, we're able to enhance that, preserve that. So we've also studied in our animal model
of cancer, metastatic cancer simply giving ketones to the animals on a high-carbohydrate
diet, it was almost unexpected the level of enhanced survival that we had with ketone

[Rhonda]: What kinds of tumor is it? [Dom]: This is a model of metastatic cancer
and the primary tumor, it was derived from a glioblastoma, the GBM. And that tumor cell line is so aggressive
that when it's injected or implanted into the flank of the animal, there's rapid systemic
metastasis to all the organs and the brain. And the model that was developed by Professor
Tom Seyfried at Boston College. [Rhonda]: Didn't he publish a paper on…? [Dom]: It made the cover of the "International
Journal of Cancer." Yeah, when I wanted to this study initially,
I wanted to do a brain tumor model, like with our diet and our stuff. He sort of wouldn't let me use the model. He's like, "Well, use this model of metastatic
cancer because it's the most aggressive thing out there and no one will…" He's like, "If you create a cure, something
that can cure this animal with metastatic cancer, you basically stumbled upon something
that has the potential to cure cancer." So that, kind of, intrigued me.

So I knew working with his model would be
kind of difficult because the tumor burden…the animal has died so quick from the tumor burden,
but it allowed us to screen a variety of things and just using this model understanding that
in aggressive metastatic cancer, the cells are highly glycolytic, and they're highly
in favor of using glucose and glutamine probably as an energy source. We're looking at ways to target glutamine,
but have not really, kind of, implemented that yet in a combination therapy.

But regardless, the animals are eating a high-carbohydrate
diet with ketone supplementation and it reduced tumor growth and proliferation. We think that the ketones may be altering
glucose metabolism. [Rhonda]: They induce cell death? [Dom]: Well, we think so. There's more, like, sort of, apoptosis in
the tumors that were there, but just overall, there's just less tumor growth and less tumor
burden and enhanced, most importantly, a 50% to 60% increase in survival time in animals
that are supplemented with this.

And it wasn't…although the animals tend
to eat a little bit less if they're in ketosis, naturally, which makes a ketone supplement
kind of an attractive thing for people that are dieting because when you're sending energy
to the brain in the form of ketones, it has sort of a satiating effect on your body and
it, kind of, shuts off that hypoglycemic trigger that makes you want to binge or crave food.

[Rhonda]: So is it changing ghrelin and leptin
signaling, or…? [Dom]: We think so. Yeah, we think so. That's the next thing to look at. It does impact the satiety centers of the
brain. It's not like you don't want to eat, but you
have control over your appetite. [Rhonda]: You know what? I just thought of it. Lauric acid, which is C12, suppresses ghrelin
in the gut, which is the hunger hormone… That's kind of interesting, right? [Dom]: Is that specific for lauric acid? [Rhonda]: It's specific. [Dom]: I knew with certain fats. Really, lauric acid? That's interesting. [Rhonda]: It is. [Dom]: I'll look that up. [Rhonda]: Sorry to interrupt. [crosstalk 00:59:39] Let's continue because
this is really cool. So you fed them a normal high-carbohydrate
diet, gave them this ketone ester, as we were talking about. [Dom]: Ketone ester, the same ketone ester,
which is. [Rhonda]: The tumor burden was decreased,
survival time increased.

[Dom]: Yep, yep. And so that was another demonstration, and
the data looked very similar to the ketogenic diet. So we did the study. [Rhonda]: They're eating less, you said, right? [Dom]: They were eating slightly less, so
we went back. We were thinking, "Well, maybe we're just
getting a calorie-restriction effect," because if you have a mouse model or any kind of cancer
model and you overfeed it the tumors are going to grow faster, and if you underfeed it you're
going to restrict some of the tumor growth.

So they were eating a little bit less, but
a maybe only 10% drop in body weight. So we went back and we did a calorie-restriction
control experiment, and although there was a decrease in tumor, it was nothing like the
ketone supplement. So ketones we know undoubtedly they have anti-cancer
effects, and it could be maybe through their expression of their gene expression as a histone
deacetylase inhibitor. We think that they inhibit glycolysis. We think that they influence a number of pathways
associated with cancer growth. [Rhonda]: Did you measure mitochondrial respiration? [Dom]: Of the tumor and the tissue or…? [Rhonda]: Just, yeah, of, or any tissue, like,
so let's say, did you give them ketones in this…. [Dom]: We looked at ROS production. Yeah, it can sort of knock down reactive oxygen
species production. [Rhonda]: In the tumor? Or in… [Dom]: In normal tissue, yeah. And now it's kind of interesting, too, that
in the tumor tissue in previous experiments, I showed that it could knock it down significantly,
but I think in the paper that we published, there was a slight decrease in ROS production.

[Rhonda]: Yeah, that's interesting. [Dom]: We don't know, we do…our experiments
are sort of like a top-down approach. We find out what works and then, we're mechanistically
going after it and we're doing -omics work metabolomic in particular, and western blots
and assays. So now we're going after the mechanism, and
if we understand the mechanism, we can, kind of, work backwards and tweak the molecule
or adjust the diet in ways that may enhance the therapeutic effects. [Rhonda]: It would be really interesting to
do some of… I don't know if you can radio label these
ketone esters and see if, like… [Dom]: Yeah, that's another thing we'll look
at. [Rhonda]:…are they being used as a carbon
source for ATP? Are they being used for something else, right,
like…? [Dom]: Tracer studies. That's what we want to do. Yeah, we're going to partner with a company
that has, sort of, the market on doing these tracer fate associations. I think even doing a 13-Carbon glucose tracer
fate association study where we give this, and we give ketones we look at the fate of
glucose in the presence and absence of ketones and see how that may be influencing…

[Rhonda]: There you go, is it going to the
pentose phosphate? I mean, this is all stuff I really want to
know, so I'm, like, super-excited someone is doing it… [Dom]: And I wanted to do this from the beginning,
but I think we want to find out what works first and then now that we're identified,
sort of, things that work with the diet and ketone supplementation, hyperbaric oxygen,
I was telling you. We also study, we do a lot of metformin work. We have…I have one excellent Ph.D. student
and Nate Ward, he's looking at the effects of metformin and on survival, tumor growth
and doing a lot of the cell-based assays. And he's also looking at dichloroacetate,
DCA. So it activates pyruvate dehydrogenase. So he's looking at each one, individual, and
also in combination as a cancer therapy. [Rhonda]: Okay, I'll give you some of my ideas.

And so I, just because I want someone to test
this. But with DCA, so I did a lot of work, in my
graduate research, I did a lot of cancer metabolism I was in contact with Craig Thompson, Ralph
DeBerardinis … all those people that we were talking about earlier, and they did a
lot of glucose withdrawal studies, glutamine withdrawal studies, blah, blah, blah, blah,
like all that stuff. So I've got a lot of interest in it stemming
back from years and years ago. And I also was very active in apoptosis, working
with some of the top guys in the field, Doug Green. So I, sort of, like, the way I think about
all of this and the intersection between them is that, like cancer cells are… Here's why I think cancer cells are glycolytic. So I mean, the Warburg effect you've talked
about this and you published on it. [Dom]: Is it a cause or a consequence? Yeah, damage respiration. That's sort of a… [Rhonda]: Right, so I don't think…and I
think even Otto Warburg himself published immediately after his original science paper
because he originally theorized damaged mitochondria were the cause it, but then it's not.

It's not that the mitochondria are damaged
enough that they're not respiring. Even to this day, I don't think we have really
shown that or disproven that, like, thoroughly. I don't think it's a cause, but the reason
I think that cancer cells become glycolytic, I don't know what causes it or how, I think
the reason is they do is because they don't want to use their mitochondria. And the reason they don't want to use their
mitochondria is because mitochondria produce ROS, and that will drive… This is the whole basis of how you kill a
cancer cell, chemotherapeutic drugs, the way they work is because they induce a little
bit of reactive oxygen species toxicity through a variety of mechanisms. [Dom]: Some more than others, but, yeah, [Rhonda]: Right, through a variety of mechanisms… [Dom]: Augment oxidative stress, yeah. [Rhonda]: …which then pushes the cancer
cell to death because normal cells don't have boatloads of proapoptotic… If you look at any cancer cell, they have,
like, boatloads of it. I mean, just tons and tons of proapoptotics,
but they have countered it and they are ready to die.

They just need a little push, and DCA activates
mitochondria, and I think that's part of how… [Dom]: Hyperbaric oxygen, too. [Rhonda]: Hyperbaric oxygen, and we were talking
about this earlier. I think that's also… [Dom]: Naturally stimulate it, yeah. [Rhonda]: Yeah. But so I'd like to see someone, sort of, test
that because I think that possibly DCA wouldn't be as potent at killing cancer cells if you
gave it NAC or something that's going to sequester the reactive oxygen species. [Dom]: Yeah, so could you block it, yeah. That's another interesting, that would be
a good control to do, yeah.

[Rhonda]: And studies have shown that giving
mice supplemental vitamin E, something that's going to potently sequester reactive oxygen
species, actually allows tumors to grow faster. And this has been [inaudible 01:06:35] in
research. [Dom]: Yeah, N-acetylcysteine, too, and NAC. [Rhonda]: NAC, as well, yeah. [Dom]: With metastatic melanoma, I think,
came out, yeah. [Rhonda]: Yep, yep. And then also there's one in lung cancer. I think it was the same group publishing that,
too. But so I think that part of the reason…because
cancer cells are so smart that I think that not having their mitochondria active is very
beneficial to them because.

[Dom]: Or less mitochondria, too, as… [Rhonda]: Yeah, less mitochondria. [Dom]: So just a deficiency. And there's, yes, reports. So there's debate are the mitochondria defective
or are there just a decreasing number of mitochondria? I think it's both. I think mitochondria are structurally and
functionally impaired, and I think there's a deficiency of them. [Rhonda]: You mean in cancer cells or [crosstalk
01:07:21] normal? [Dom]: I think in cancer cells, but I think
in just normal cells, if you if you're drinking alcohol and bombarding the liver with oxidative
stress that you're damaging mitochondrial…you're damaging the mitochondria, and over time,
you are going to… [Rhonda]: Of course. Normal metabolism. [Dom]: …induce the Warburg effect by causing
progressive damage, mitochondrial oxidative phosphorylation the cell's ability to maintain
energy status through mitochondrial oxidative phosphorylation will be, its capacity will
be impaired.

So it will activate oncogenes and oncogenes
that drive the glycolate. You'll have, some cells will die, the ones
that survive are the ones that go on and activate the complementive genes that cause the transformation
of a normal cell to a cancer cell. And that's how I, sort of, say that this progressive
damage, you could do it with radiation, you could do it with chemotherapeutic agents,
you could do it with inflammation, chronic inflammation is damaging respiration. And it's that damaged respiration that can
kill off cells and the ones that survive, that are hardy enough to activate the genetic
program that allow them to survive are kicking on the oncogenes that will then go on and
produce a Warburg phenotype.

So that's sort of the metabolic theory of
cancer in a nutshell. And it differs from what the thought leaders
in the field are saying that it's more of default state to ensure the preservation of
the cancer that that exists, but not the cause, but there's still this elusive enabling factor
that we still don't know and I think the metabolic theory nicely explains is a pretty elegant
explanation as to how a normal cell converts to a cancer cell. And there are other genes involved, definitely,
but, I mean, at the very most, the most we can link hereditary effect to cancer is maybe
about 10% 7%, I think, was a number that is being thrown around now, but about 10% of
cancers are from hereditary, but this, the epigenetics, I think, is something that will,
yeah…and that's something that's evolving very fast.

[Rhonda]: I mean, I think that DNA damage,
and that's been pretty well-shown, damaging DNA, both mitochondrial and nuclear DNA, the
damage that can lead to aberrant cells metab-, like, cells. [Dom]: And I think the mitochondria are more
important because the mitochondria have less of a robust DNA repair mechanism. And also the DNA of the mitochondria have
more coding regions. So if you bombard cells with radiation classically,
radiation biologists are taught that that radiation is directly damaging nuclear DNA
and then that kicks on, causes the genomic instability that causes cancers, but I think
what is being more appreciated now is that the mitochondria are selectively vulnerable
because their DNA repair mechanisms are far less robust.

They have much greater coding regions within
their DNA, and they are the ones kind of calling the shots, they're making the energy, and
if the energy status of the cell goes down, that's going to trigger the nucleus, that's
going to trigger an energetic crisis in the nucleus, and the nucleus is going to kick
on oncogenes to transform the cell from a normal to a cancer cell. So the stability of a nuclear genome is tightly
regulated to the energetic state of the cell. [Rhonda]: Yeah, so I have a little bit of
a different way of thinking about it mostly because I'm also doing a lot of research on
this experimentally.

So I measure damaged DNA, and I measure mitochondrial
function after I induce radiation in some sort of… [Dom]: In primary cells? [Rhonda]: In humans, in blood cells, yeah. But so, mitochondria, you mentioned that nuclear,
they have more repair mechanisms, and that's true, but mitochondria have very elegant and
beautiful way of repairing damage through fusion, right, mitochondrial fusion and fission. And this is a process, I mean, this is how
we are able to repair damaged mitochondria because they're constantly fusing with healthy
mitochondria changing, I mean, exchanging their DNA content, protein, things like that,
and fissing back part. So, of course, when those mechanisms become
impaired, then that's, we start to have more accumulation of damage more because they can't

[Dom]: Fission proteins, the production of
the proteins that cause that are also tightly linked to oxidative stress. [Rhonda]: Yeah, so I mean there's lots of
different ways to repair damaged mitochondria. I also did a lot of work in graduate school. But I don't think it's clear, I don't think
that the metabolic theory of cancer… [Dom]: Far from clear. [Rhonda]: You know, when you drop the ATP
status in the cell, what happens is the cell dies and apoptosis gets trigger, and that's
the primary…before oncogenes are activated, the cell dies. [Dom]: Unless it's if it's more gradual, then
you have the activation. And most cells die. So you have 999 cells die and then you have
one that, kind of, activates the complement of genes that can, allows it to survive, gives
it survival advantage. That's what you get with chemo, too, or radiation
when you blast a tumor with radiation. You get, there's few that can survive. And if you do that over and over to the tumor
or over the course of chemos, you're kind of making a super-cancer because you're increasingly
selecting for the most aggressive, glycolytic hardy stem cell-like tumor cell by hitting
it with more chemo, you're just causing more DNA damage and more transformation, mutagenicity.

Do you see it like that? [Rhonda]: I don't know. [Dom]: I'm not against standard of care, but
I'm in favor of. [Rhonda]: I wanted to believe, in graduate
school, I wanted nothing more than to believe that mitochondrial dysfunction is the cause
of cancer, but I just couldn't, just couldn't attribute to myself. You know, I kept trying and trying, it would
have been easier for my graduate… My graduate career would have been shorter,
for one, but I just couldn't enough evidence to convince myself of it. And that doesn't mean that it doesn't, it's
not true, it just means, I just…so far don't…I don't think that's the origin of cancer.

I think that metabolic dysfunction plays a
very important role in causing cancer. Most primarily through inflammation through
all the effects of, like the insulin signaling and the inflammation, the reactive oxygen
species. All these things that are damaging the cell,
but I don't necessarily see it the way that you, sort of, described it as them… [Dom]: An initiator. [Rhonda]: Yeah, them changing or activating
oncogenes. I don't think that's really been shown. [Dom]: I don't think anyone's studying that
because…or studying it in the way that would make it clear, and I think it may vary between
cancers like leukemia and lymphoma and relative to glioblastoma.

I mean, we know these are just, they have
a different metabolic and a different gene signature. Glioblastoma has hundreds, if not thousands,
of genetic mutations. You know, so hence the name glioblastoma multiforming,
you have all these different cell types and everything. Whereas other types of, like, for leukemia,
for example, Gleevec works marvelously well because it's targeting something that's very
specific. So I think it will be impossible to get a
clear answer to this and I don't think it's…

I think maybe I'm a centrist. So I'm somewhere in between the genetic versus
metabolic, but leaning more towards a metabolic origin for many solid tumors, but there's
some cancer that just, kind of, throw me a curveball like different types of lymphoma
and leukemia, testicular cancer. And they're all responsive to chemo, many
of them are. [Rhonda]: So what about, like for me, when
I think of mitochondrial dysfunction, to me, that leads more to neurological dysfunction,
neurological disorders, less for cancer, less of cancer like when you…mitochondrial mutations,
genetic mitochondrial mutations in mitochondria genes, there's much more it has much more
of an effect on causing certain types of neurological disorders rather than, like, cancer, right? There's one, I think, the succinate dehydrogenase
complex II, one of the components. I know this because I was trying to figure
this out in graduate school, it was, like, a huge question. [Dom]: And the really bad diseases, yeah,
these mitochondrial disease, yeah. [Rhonda]: So that's what I usually think of,
when I think of mitochondrial dysfunction, I always think of it as being more of a, playing
a causal or initiating role in neurological disorders and neurological dysfunction, and
not so much as, plays a role.

I think that mitochondrial dysfunction and
abnormal metabolism plays a role in cancer, but I don't think it's that initiator the
way you were describing it. I just don't think that's been shown. [Dom]: I'm going to prove you wrong. Well, our lab is we're not, we're just trying
to find the answer. And I think that as we move forward and develop
the tools, I think the answer will start to get a little bit more clear at least using
the models that we're using. But I think regardless even of the origin…the
origin is important because if we…the way we treat and prevent cancer is going to be
different if we know the origin for sure. You know, if it is a mitochondrial versus
genetic origin or whatever origin. And, I mean, there's a case for viral origins
of cancer, too, but these viruses are, sort of, the ones that damaged mitochondria, too.

I've been, sort of, interested in the viral
origins of cancer. It will influence how we prevent cancer. So in addition to developing therapies, we
want to study animal models, and maybe inducers of carcinogenesis and then adapt them, or
to treat them prior to, or put them on a therapy prior to letting them live out their lives
if they're prone to spontaneously forming tumors, or letting them live a few months
prior to the introduction of a carcinogenic agent, and then seeing after X amount of time,
whether the tumors form.

So can we prevent this does have profound
implications for people who have been, went through chemotherapy or had cancer in the
past, and should they be on some, kind of, preventative, should they do a therapeutic
fast? I get this question a lot for four or five
days to a week every two or three times a year. Should they do that? Will it help them purge their body of pre-cancerous
cells and put that metabolic stress? And these are important questions that no
one is really trying to answer at least from a point of a prevention, sort of, idea. So I think that's sort of on my horizon as
the next big thing. Can we develop and implement have these protocols
available for someone to do? It could be intermittent fasting. I personally like ketogenic intermittent fasting,
where you're taking in ketogenic fasting, ketone supplements throughout the day and
through 20 hours of the day and you have a 4-hour window where you eat a well-balanced
ketogenic meal that's rich in vegetables and high in fats and protein.

And I think that could be something that could
be implemented and something that I personally am interested in writing up a protocol for
that. The work, the studies done with metformin
and showing that people who, type 2 diabetics that are taking metformin have a 62% less
chance of getting pancreatic cancer. We need to study that, you know? Should that be a part of a comprehensive preventative
therapy that people should do? I mean, I question, should I have my parents
on this? Like, should they, you know…? [Rhonda]: On metformin? [Dom]: Or yeah, on metformin, or my mom actually
had cancer years ago.

Should she be on something like this? Should everybody be after the age of 50 if
most of their family members have died of cancer? [Rhonda]: Have there been any long-term studies
on the effects of metformin? Because I'm very interested in it, but I'm
always hesitant with any drug or anything that's perturbing biological systems. [Dom]: Yeah, well, there's hundreds of thousands,
if not millions, of people on metformin so I'd say, yeah, there's a long-term data out
there whether…and a lot of retrospective studies have been done.

It's a relatively safe drug. Lactic acidosis could be a problem in higher
doses for some people maybe with renal insufficiency or impaired liver function. And then, another thing that creeps up could
be vitamin B12 deficiency. So if you are…our ability to absorb vitamin
B12 as we age is decreased, so maybe a sublingual form or even B12 injections in people that
are older? [Rhonda]: Why does metformin affect B12? [Dom]: That's a question I don't know an answer
to, but I can speculate that it may influence the transporter, and it also tends to make
stools loose for some people.

Things go through you a little bit faster
and impairs… "Impair" is not a good word. It changes the gut microbiome favorably. So "Nature"….the paper there's that came
out about two weeks ago showing that there's a favorable shift in the gut microbiome… [Rhonda]: Now the reason why it's interesting. [Dom]: …with metformin, and that may explain
it's type 2 diabetic it's glucose-lowering effects. That sort of hit me as, "Wow, I had not really
given that a whole lot of thought, but it's something that I think we should be looking
into." So I was like, "Yeah, we need to collect all
the start collecting the feces from these animals that we're doing metformin on to figure
out what's going on with the gut microbiome," but I think it's influencing the absorption
of B12 in some way that I don't really know.

[Rhonda]: Does metformin…is it doing anything
in addition to mimicking a lot of the same signaling pathways that caloric restriction
does? Like, is there something additional that…you
know? [Dom]: Yeah, yeah, AMP kinase, for sure. So without a doubt, I mean, it's mimicking
many of the pathways of associated with calorie restriction and with fasting. To what degree it's mimicking that relative
to a length or duration of fasting? I don't know. We're doing some work right now looking at
AMP kinase and mTOR, and downstream and upstream signaling insulin and these things, and trying
to get a picture of this, at least in a rodent model.

And then, I'd like to ultimately replicate
some of this stuff in humans, but what I think, I think metformin would be best used maybe
in pulsing it a few times a year. A lot of these things, metabolic interventions
tend to work best when you cycle them, I think. And I really have not been doing that, but
I think it's a theory that I have been working on. I need my scrapbook. [Rhonda]: Why do you think that is? [Dom]: Because your body is similar with ketoadaptation
that your body can, kind of, reset to that level, initially fasting on the ketogenic
diet is sort of a stress and it can induce a hormetic effect in gene transcription and
then we, sort of, get used to that.

You know, our gluconeogenesis is upregulated
to that level, but I think it's good to maybe pick probably not a high-carb diet, but maybe
a Paleo diet a low-carb ketogenic diet and maybe something in between and do some intermittent
fasting on occasional days. So I think this promotes metabolic flexibility. It allows our body to adapt to different situations
without being, kind of, overwhelmed by the stressor of it. So I think, to some extent, it is hormesis. And interestingly, metformin causes mitochondrial
stress, and actually, mitochondrial damage. Some researchers coined the term that it's
stimulating reactive oxygen species production and causing mitochondria dysfunction, metformin
is, and this is kind of well known in the field. So the general feeling is that, "Well, if
I take metformin and I go exercise, why is it not killing my exercise capacity or my
VO2 max or making me lethargic or tired?" It's not doing that, actually I think it's

There was a [crosstalk 01:25:34] study. [Rhonda]: Does it affect biogenesis? [Dom]: It does. So yeah, so the thought that it's kind of
stimulating, there's a hormetic effect. It's damaging the mitochondria, some people
believe this, and you get a secondary, yeah, effect through that way, like it's, kind of
like an exercise drug. But I approached it from the perspective that
metformin could lower blood glucose at least if it was high and it activated AMP kinase,
and it may decrease circulating insulin. So I approached it as a cancer drug from that
perspective, but the more conferences we go to, there's a plethora of data coming out
of metformin and a lot of people are studying it from the perspective of impaired complex
I or complex II activity in the mitochondria. So they're looking at it from that perspective. [Rhonda]: Interesting. [Dom]: I know. [Rhonda]: Yeah, it's super interesting. Especially, you're giving its effects on longevity
and cancer.

[Dom]: Yeah, yeah, and I think our most recent
data did show an increase in ROS production in our cell line. [Rhonda]: I wonder if that's how it's also
killing the cancer cells. [Dom]: Yeah, it could be. [Rhonda]: You mentioned when you were talking
about gluconeogenesis, you triggered something in my mind. I wanted to ask you, I forgot. So when you're in nutritional ketosis or fasting-induced
ketosis, you need to make glucose you still need glucose, your red blood cells have no
mitochondria and your red blood cells are important, right? So you're making glucose through this process
that you mentioned called gluconeogenesis. [Dom]: Glucose does not bottom out. It's not like one or the other. You're pulling fuel source from… [Rhonda]: So I wanted to ask you about, like,
how… Has anyone looked at where…so if you are
on a pretty strict ketogenic diet or whatever it is you're doing to get into ketosis, what…so
does the liver use, like, glycerol, lactate, like, both as a primary source to make glucose? Is that glucose predominantly going to red
blood cells or does it go has that been looked at to see, like, where, you know…? So red blood cells, like, are they getting
enough of their glucose or they, you know? [Dom]: I think so.

I mean, you'd probably have to severely calorie
restrict. In those cases, you could become anemic or
impair…your immune system is also, too, highly dependent to some extent on glucose
and glutamate. So, yeah, you have lactate, you have the glycerol
backbone, the fats… [Rhonda]: But they always have mitochondria. [Dom]: Yes, yes. So glycerol backbone of fatty acids or of
triglycerides, for sure, lactate, yes, and amino acids, gluconeogenic amino acids in
your diet also are a source of glucose.

So gluconeogenic amino acids in your skeletal
muscle your muscles constantly breaking down or remodeling especially in athletes. So they're all sources. The contribution of each of these gluconeogenic
sources in each individual probably varies tremendously, but I would say that… So glucose is always going to be there, and
the body ensures through very powerful homeostatic mechanisms that your glucose is going to stay,
rarely go below three, maybe 2.5 millimolar, mine will drop two, go to four and stay within
a very tight range, but what does change considerably from a glucose regulation standpoint is the
insulin. Insulin bottoms out to the point where I've
seen enough blood work to show that in many cases, insulin and IGF-1 is below the reference

So insulin signaling goes down. So if insulin's down, all those insulin pathways
that you see on your flowcharts are all going to be suppressed and IGF-1, obviously, it's
going to be lower and I think that's a really important consideration to factor in as it
relates to cancer therapeutics, cancer biology, cancer prevention, even. But also from the perspective of muscle metabolism. And I think by keeping insulin signaling sort
of low, you upregulate factors that make you more responsive to insulin.

So I think, and ketones can kind of compensate
for a deficiency in insulin, and that was, a lot of the reviews by Richard Veech talked
about that. And the ketones themselves are anti-catabolic
for protein sparing. So if you're in a state of ketosis, you're
protecting gluconeogenic amino acids and skeletal muscle from being degraded. So you are as a metabolic fuel, but you're
also, there's evidence that you're inhibiting proteolytic enzymes and pathways that would
otherwise be chewing up your muscle tissue over time. [Rhonda]: That's super-cool. [Dom]: So it's anti-catabolic, yeah, so ketones
are anti-catabolic in that part.

[Rhonda]: So then you're probably not using,
I mean, the gluconeogenic amino acids as much… [Dom]: From skeletal muscle, yeah, not as
much. So the idea is that you want to keep pumping
in the fat, too, if you're on a ketogenic diet. If it's not sufficient with ample amounts
of fat, you're probably much more catabolic. So you want to ensure that you're using the
fatty acids, go to the mitochondria that uses fuel, they keep the mitochondria happy as
do the ketones. Then the glycerol is kind of,shuttled and
it's a very nice kind of an elegant pathway to ensure that we have that flux of glucose
for vital functions like the red blood cells and making…there's an number of neurotransmitters
and hormones that require a baseline level of insulin or glucose to be used.

[Rhonda]: Yeah, and we talked about… [Dom]: A lot of things, yeah. [Rhonda]: Yeah, it's just so many things to
discuss, but I'm really, like, thankful that you… [Dom]: We can probably talk for, like, four
or five days non-stop before we like collapse from… [Rhonda]: You see how I get, I get, like,
really excited and I'm like, "Okay, wait, I got to ask you this question. I have this idea." And then you're just, like, full of information.

So it's kind of neat. [Dom]: A fun field to be in, right? [Rhonda]: Totally, I guess. [Dom]: I mean, I'm always, I feel like I'm
so lucky to be in an area of…be in an occupation where discovery, we have the potential to
discover something new that can impact the population and get paid for it. [Rhonda]: Okay, that part, I get. Because you totally, I'm sorry to change the
subject, but you're talking about glutaminolysis and I have done a lot of research on this,
and there are questions that I would love to be answered, but haven't been. So, since you're looking at this and you have
resources, I'll just throw it out there.

Obviously, you said this is well-known literature
that glucose and glutamine are both source…cancer cells love them. It's like crack for cancer cells, both glucose
and glutamine, and I've done a lot of studies on various types of cancer cells and these
are in vitro. So this is not in an animal model where I
can, I withdraw glucose and the cancer cells will proliferate slower, some will die, but
if there's glutamine there… [Dom]: What's your level of glutamine? [Rhonda]: Two millimolar. [Dom]: Two millimolar, yeah. [Rhonda]: Yeah, so then I would start withdrawing
the glutamine and glutamine withdrawal, this is all in vitro, though.

Glutamine withdrawal would kill them within
24 hours, but. [Dom]: Pretty lethal, yeah. [Rhonda]: Very lethal, and has been shown
at least some of the studies that were initially done by Ralph DeBarardinis when he was with
Craig Thompson, and later when he established his own lab where he radiolabeled and showed
that, actually, it was being used predominantly for macromolecular synthesis and not for which
is…of course, that makes sense because a lot of tumor cells aren't using the mitochondria. [Dom]: Making fatty acids, actually. [Rhonda]: Making fatty acids, proteins, like,
for new synthesis. [Dom]: Like, cell membranes and stuff. [Rhonda]: Right, so the question for you…the
question that I have and this is… So that's one of the spectrum. Okay, glutamine seems bad when you're looking
from an in vitro perspective and I did these studies, but many people have published on
this. You're familiar with the literature. But then there's the other perspective where
really glutamine really is believed, like, to gut, to cells, it's very, very healing
and therapeutic for gut, and when you take glutamine orally, the gut takes it, it's not
getting into your bloodstream, It's not being so…

[Dom]: The gut and the liver take its share
and very little of it actually gets into the bloodstream. [Rhonda]: Right, so that's what I'm getting
at. The question is, if you have a mouse model
of a solid tumor that's not gut-oriented, so it's not colon cancer, like let's say it's
you got a pancreatic cancer or… [Dom]: Brain tumor. [Rhonda]: …brain tumor, then you give the
mouse glutamine, is that really is it really going to affect the tumor or is it just going
to help the gut? I mean, of course, it can indirectly affect
it, but the question for me, in my mind, is, well, yeah, if you had tumor in the gut, man,
that's like crack for the tumor.

Do not take glutamine, do not, you know… But on the other hand, if you've got gut issues,
you know… [Dom]: It can be helpful. [Rhonda]: Right, do you see what I'm getting
at? [Dom]: This is something that I have thought
about. [Rhonda]: You have? [Dom]: Yeah, I think about stuff like this,
yeah. [Rhonda]: I'm not alone, yeah, well, in vitro
is very different because the way our bodies are working and the way glutamine when we
take glutamine, it's affecting our gut, it's very important. I mean, it helped. It's helped me. [Dom]: I used to take it. [Rhonda]: It's helped me with gut, but then
there's this whole, like, conflict in my head around…cancer cells love it, but the question
is if I'm taking it orally, and I have some cancer cells, in my, I don't know, my liver
or something, then I guess you said liver is one that does. it does use it, but, so the question is, is
that harming me or is it helping me? [Dom]: Should you take it or not? Yeah, I get that question a lot.

For GI cancers and liver cancer, I would say
do not supplement glutamine, and I would say under most conditions…I always say in those
states, I actually tried to look up the glutamine content of food, and you might want to avoid
it or minimize glutamine, high glutamine-containing foods. Otherwise, I wouldn't really pay too much
attention. Some patients really stress out about it but
I think if you just keep your protein low to moderate, or keep your protein at a level
to ensure proper regeneration and just, kind of, replenishment of your normal cells, and
prevent protein deficiency, and being in a state of ketosis will help with that to some
extent, but glutamine is pretty low on…

[Rhonda]: The classical ketosis, right, where
it's 10% protein? [Dom]: Yeah, yeah, and I think that will lower
your blood glutamine levels, just being on a ketogenic diet will do that. And then, you could further lower it by selecting
protein food sources that are lower on the end of, are glutamine. I'm not for avoiding protein types of supplements,
avoiding glutamine supplementation all together. And you may be able to further suppress glutamine
by taking a supplement that's like high branched-chain amino acids, high essential amino acids. So taking a supplement that is formulated
in a way that, kind of, gives you essential amino acids, excluding glutamate, of course.

Glutamine is not an essential amino acid. It's conditionally essential. But then you…I don't think you'll run the
risk of being deficient in glutamine in any way, but I would avoid, I would pay attention
to it if you have a GI cancer or liver cancer, and then if… [Rhonda]: The liver, I didn't know, but yeah,
GI was… [Dom]: So if you have, say, for example, like,
a brain tumor and you're taking a drug that can impair systemically, you're taking something
that impairs your GI function, and it may be helpful to take a little bit of glutamine
because I don't…I really don't think…the gut's going to be very greedy when it comes
to glutamine.

[Rhonda]: It's very greedy. [Dom]: So I think just maybe even 5, 10 grams
of glutamine to help repair your gut. We know that if your gut permeability is impaired,
that can wreak havoc in your body as far as systemic inflammation. So try to…and there's other ways to repair
your gut, too, but I think glutamine may be a factor in helping to ensure proper gut. [Rhonda]: Yeah, there's definitely other ways. I mean, I think that you know, like I was
saying, fiber, good diet, and things like that. [Dom]: Exactly. But glutamine has been used in oncology. So, yeah, glutamine is for helping people
with chemo combating the issues with chemo. And then glutamine has almost been like a
staple, you know… [Rhonda]: So they give it to chemo patients,
kind of… [Dom]: Help them recover part of the immune
system, too. [Rhonda]: Because your gut regulates the Immune
systems well.

[Dom]: Your gut is, like, what, 70%, 80% of
your immune system, right? So it's huge. So we want to keep your gut as healthy as
possible. And there are many drugs out there that really
impair gut mobil-, or… [Rhonda]: And diets, too. [Dom]: Yeah, and diets, too. [Rhonda]: Yeah, so, cool. All right, Dom. [Dom]: Endless amount of things we can talk
about, right? [Rhonda]: I know, right. Just keep going, Dom. [Dom]: Yeah, I've had, like, 100 things pop
into my head.

I was like, "Should I bring that idea or should
I not? No, no, no." [Rhonda]: Bring it up, I'm always interested
in new things, so… [Dom]: We do have ketone esters here and not
too many people are brave enough to try them, but we have a lot of studies going on using
a wide range. See, they're all different types of ketone
supplementation, and I know that's, kind of, was like one of your main interests that you
wanted to hit on. [Rhonda]: Yeah, yes. [Dom]: And I would say stay tuned because
we have so much going on right now with, like, all these studies looking at ketone supplementation
and the answer that I want to really focus on is what, kind of, benefits are we deriving? There's been so much work on the diet what
kind of, benefits can we mimic with just purely a ketone supplementation? And can we further augment the therapeutic
efficacy of the ketogenic diet with supplementation? So with diet and then we supplement 10%, maybe
20% of the calories with some form of ketone supplementation.

Hopefully. we work to formulate it in a way that makes
it pleasurable to taste and not taste like gasoline, if we can do that. [Rhonda]: Does it taste really like gasoline? [Dom]: Yes, yeah, like jet fuel, really. It's pretty bad, but the ketone esters do,
but we're working on the ketone salts that you might know of, KetoCaNa, ketone, there's
a couple ketone products out there. [Rhonda]: Are there benefits or drawbacks
taking one or the other? [Dom]: The salts are like as far as ketogenic
potential, are pretty similar to MCT. So they're another level up from MCTs, I would
say right now, but they're being formulated. We're formulating them and testing them in
ways to make them closer in potency to the ketone esters. And I think… [Rhonda]: Are these available, like, to consumers? [Dom]: Not for human use yet, but we're working
on doing all the safety studies and then all the palatability work and formulating them
in a way that probably within the next six months to a year, that they will be out.

[Rhonda]: Oh, so soon? [Dom]: We're tracking them for therapeutic
purposes. So for clinical trials, for specific diseases,
and then, they kind of work backwards to the consumer broad market eventually. But, and for oxygen toxicity, obviously. That was the original application for oxygen… [Rhonda]: Yeah, I'm also really interested
in it just for movement disorders. My mother has orthostatic tremor, and she's
not the kind of person that is very compliant. I mean, she may try something for, like, a
couple of days, maybe a week. [Dom]: That's typical. [Rhonda]: Very typical, and drives me crazy
because I feel like I have so much knowledge, I could help her, and it's just very hard
to get her to do, to get any movement, but I would…I'm very interested in the potential
use of ketone esters or whatever delivery method that's the best in potentially helping
reduce her tremor because when she stands still, her legs shake and it's very, it's
inhibiting to her life, I mean having to…

When she's walking, I mean, she's fine, but
if she stands, stands in line… [Dom]: From sitting to standing, and just… [Rhonda]: No, even walking to standing, just
standing. So standing still, it's called orthostatic
tremor, and it's common enough… [Dom]: Yeah, yeah, I've heard about it. [Rhonda]: …that, but it's not like, it's
not as common as essential tremor, but she also has essential tremor, as well, [crosstalk
01:43:13] kind of interesting. Yeah, so I'm extremely interested in the potential
benefits of nutritional ketosis, yes, but, like I said, she's not very compliant.

So I'm, sort of, like, okay possibly giving
her some sort of ketone ester see how that would affect…because then again, if she… [Dom]: You might want to start with MCTs. I mean, something, what I showed you today,
the MCT Powder by Quest Nutrition is really pretty close it's very potent from a ketogenic
perspective and if you were to take four to six to up to eight scoops a day, which would
be tolerable in a course of a day, she would be in a mild state of ketosis and would be
getting the benefits from it.

[Rhonda]: Really? Do you think that would be easier than, like,
the MCT oils? [Dom]: From perspective of GI tolerance, yeah. Many people I would say up to 40% or 50% of
people are going to have some tolerability issues with liquid MCTs. At least a big dose that gets you up into
sustainable ketosis. You can incorporate MCTs in your food, even
salad dressing is cooked with it, mix it in with different things, but the MCT powder
I found was, is you can get levels about twice as higher than you can with the oil just simply
because your GI tolerance is much better in a powder form. So it's formulated in a way that, kind of,
allows us to sustain the slower release of the MCT instead of a liquid which tends to…some
people just can't tolerate the liquid at all.

I can tolerate fairly high amounts relatively
speaking, but I could tolerate much higher amounts with an MCT powder. [Rhonda]: You can put it, like, and you can
mix it with water, coffee, tea or whatever. [Dom]: Yeah, I could put it in coffee. [Rhonda]: Yeah, [inaudible 01:45:05].. [Dom]: Yeah, and you liked it, right? [Rhonda]: Yeah. [Dom]: I mean, it's like great. [Rhonda]: It's like creamer, but, you know. [Dom]: So they really nailed that product. [Rhonda]: The coffee makes her tremors worse
so she doesn't drink caffeine. [Dom]: No stimulants, yeah. What about decaf coffee or something like
that? [Rhonda]: Um, I think she… [Dom]: It's a good vehicle for MCTs. I mean, you could put, like, butter and MCT. I know you don't like sweeteners, but I just
put in a little pinch of stevia in there. [Rhonda]: Stevia is okay. [Dom]: And it makes it a really enjoyable
drink for me. [Rhonda]: Yeah, that's great that it's available
because I'm, kind of…that would be something that we probably try, seeing if that has any
effect on her tremors.

[Dom]: As you know, diet is key, though. [Rhonda]: Diet is key, yeah, because if you're,
like, eating a bunch of refined crap and processed foods, and just terrible diet, it's not much
that ketones are going to do. Right? [Dom]: Yeah, and what I find in people that
are resistant is that if you can introduce foods that replace other foods which is good,
and I think Quest Nutrition, too, is making a line of… they're not out yet, but I've
tried everything from a ketogenic Oreo to a ketogenic brownie to ketogenic chocolate
bars. So these are foods that when you eat them,
you're in ketosis, and they taste as good or good as their high-sugar counterparts that
are on the market. So I see that as almost like the next frontier,
like, designing, developing ketogenic food products from whole food ingredients that
are from natural sources and not synthetic sweeteners or artificial flavors and things
like that, that will allow you to…will ensure greater compliance of nutritional ketosis.

Mainly at first, maybe targeting disease populations,
but undoubtedly people from all walks of life will be wanting to use these foods especially
if they taste good. And I can tell you from kind of a beta tester
point of view that it is possible to create a line of food products from crackers to chips
to, you name it, really. It's possible to…it's pretty easy to make
something taste good when you're working with fat because fat has…fat and salt kind of
make things, are really good on our palate. And they're very satiating. So we'll eat it a little bit, and it's just
enough to sustain us and give us the energy that we need without overeating. [Rhonda]: Yeah. [Dom]: So I'm excited about the ketone supplements,
obviously, but I'm excited about a line of ketogenic diet food products that can ensure
compliance in people who really need it.

Because I say that's where…there are people
who know the diet would help them from a therapeutic standpoint, but they just lose interest after
trying to follow through with the diet. [Rhonda]: Yeah, and it would help eliminate
a lot of suffering especially for some of these people with these, like you said, drug-resistant
seizures. [Dom]: Yeah, for sure. [Rhonda]: That, so, yeah. Well, super-cool, Dom. Thanks for speaking with me and for doing
all this really cool research. I'm going to keep following your researching. [Dom]: Thanks for visiting. [Rhonda]: If you want to learn more about
your research, what you do, things you talk about anything related to your research, where
can we hear more about you? [Dom]: I would say I'm working on a more interactive,
but broader site, but for right now,, I think, would be the site to go where I compile
a bunch of links on there with dietitians, ketogenic-savvy, registered dietitians that
I recommend, books, talks from IHMC, which I'm excited to listen to your IHMC talk this
week because that's on there.

So I would say that would
be the site… [Rhonda]: And what about social media, do you have any? [Dom]: Yeah, Facebook. You can find me on Facebook, on Twitter, LinkedIn,
Pinterest, maybe I go there sometimes. But Facebook, Twitter, and LinkedIn are sites
where I will post information about our research or related research in the area of nutritional
ketosis and metabolism. [Rhonda]: Awesome. Thanks a lot, Dom. [Dom]: Thank you. Thanks for having me..

Leave a Reply